https://nypost.com/wp-content/uploads/sites/2/2025/03/2025-person-stabbed-back-96084267.jpg?quality=75&strip=all&w=1024

New York’s MTA partners with Google to tackle subway delays using smartphone technology

The Metropolitan Transportation Authority (MTA) in New York City has partnered with Google for a groundbreaking pilot program focused on enhancing the reliability of its old subway network. Utilizing Google’s mobile technology, the effort aims to detect and resolve rail problems before they cause service interruptions. Named “TrackInspect,” the project signifies a considerable advancement in applying artificial intelligence and contemporary technology to public transportation.

Beginning in September 2024 and wrapping up in January 2025, the pilot project involved equipping certain subway cars with Google Pixel smartphones. These phones were responsible for gathering sound and vibration information to identify possible track issues. This data was subsequently evaluated by Google’s AI systems in the cloud, which identified zones that needed further examination by MTA staff.

The pilot project, which began in September 2024 and concluded in January 2025, involved installing Google Pixel smartphones on select subway cars. These devices were tasked with collecting audio and vibration data to detect potential track defects. The data was then analyzed using Google’s cloud-based AI systems, which flagged areas requiring closer inspection by MTA personnel.

“By identifying early signs of track wear and tear, we not only reduce maintenance costs but also minimize disruptions for riders,” said Demetrius Crichlow, president of New York City Transit, in a statement released in late February.

Addressing delays using AI and smartphones

Subway delays continue to be a constant issue for those traveling in New York City. Towards the end of 2024, the MTA documented tens of thousands of delays monthly, with numbers surpassing 40,000 in just December. These interruptions stem from numerous causes, such as track flaws, construction activities, and shortages of crew members.

The TrackInspect initiative focuses on tackling a crucial element of the problem: pinpointing and correcting mechanical issues before they worsen. Throughout the pilot phase, six Google Pixel smartphones were placed in four R46 subway cars, recognizable by their unique orange and yellow seats. These devices captured 335 million sensor readings, more than one million GPS points, and 1,200 hours of audio data.

The TrackInspect program aims to address one critical aspect of the issue: identifying and resolving mechanical problems before they escalate. During the pilot, six Google Pixel smartphones were installed on four R46 subway cars, which are known for their distinctive orange and yellow seats. The devices recorded 335 million sensor readings, over one million GPS data points, and 1,200 hours of audio.

The smartphones were strategically placed both inside and underneath the subway cars. While the external devices were equipped with microphones to capture audio and vibrations, the internal phones had their microphones disabled to ensure passenger conversations were not recorded. Instead, these devices focused solely on vibrations to detect irregularities in the tracks.

The A train line was selected for the pilot, providing a varied testing environment with both subterranean and elevated tracks. It also featured segments of newly built infrastructure, which served as a benchmark for analysis. Although not every delay on the A line is due to mechanical issues, the data gathered during the pilot could assist in resolving persistent problems and enhancing overall service.

The A train line, chosen for the pilot, offered a diverse testing environment with both underground and above-ground tracks. It also included sections of recently constructed infrastructure, providing a baseline for comparison. While not all delays on the A line are caused by mechanical issues, the data captured during the pilot could help address recurring problems and improve overall service.

El programa TrackInspect produjo resultados alentadores, con el sistema de inteligencia artificial detectando con éxito el 92% de los lugares con defectos que fueron verificados por los inspectores de la MTA. Sarno calculó que su tasa de éxito personal al prever defectos en las vías basándose en datos de audio fue de aproximadamente un 80%.

El programa también incorporó una herramienta impulsada por inteligencia artificial basada en el modelo Gemini de Google, que permitía a los inspectores hacer preguntas sobre protocolos de mantenimiento e historial de reparaciones. Esta inteligencia artificial conversacional ofrecía a los inspectores información clara y útil, lo que facilitaba aún más el proceso de mantenimiento.

Despite its achievements, the pilot program brings up questions concerning its scalability and expenses. The MTA has not revealed the potential cost of deploying TrackInspect throughout its entire subway network, which comprises 472 stations and accommodates over one billion riders each year. The agency is also facing financial difficulties, requiring billions of dollars to finish ongoing infrastructure projects.

Google participated in the pilot as part of a proof-of-concept initiative that was provided at no expense to the MTA. However, broadening the program would probably demand substantial investment, making financing a key factor for those making decisions.

An increasing movement in transit advancements

A growing trend in transit innovation

Google has previously worked with other transportation agencies. The tech company has created tools to optimize Amtrak’s scheduling and has teamed up with parking technology providers to incorporate street parking information into Google Maps. Nonetheless, the size and intricacy of New York’s subway system make this project especially ambitious.

The MTA operates the largest subway network in the United States, offering 24-hour service on numerous lines. This continuous operation introduces additional complexity to maintenance tasks, as repairs and upgrades frequently have to be performed alongside active service. Employing AI and smartphone technology, the TrackInspect program might assist the MTA in tackling these challenges more effectively.

Looking forward

Aunque el piloto de TrackInspect ha concluido, la MTA está investigando asociaciones con otros proveedores de tecnología para seguir mejorando sus procesos de mantenimiento. La agencia también está evaluando los datos del piloto para determinar su impacto en la reducción de retrasos y mejora del servicio. Las primeras señales sugieren que ciertos tipos de retrasos, como los causados por problemas de frenado y defectos en las vías, disminuyeron en la línea A durante el periodo del piloto. No obstante, la MTA advierte que se requiere un análisis más detallado para confirmar un vínculo directo con el programa.

While the TrackInspect pilot has ended, the MTA is exploring partnerships with other technology providers to further enhance its maintenance processes. The agency is also analyzing data from the pilot to determine its impact on reducing delays and improving service. Early indications suggest that certain types of delays, such as those caused by braking issues and track defects, decreased on the A line during the pilot period. However, the MTA cautions that further analysis is needed to confirm a direct link to the program.

For now, the pilot represents a promising step toward modernizing the MTA’s operations and addressing the challenges of an aging transit system. By combining the expertise of tech companies like Google with the experience of transit professionals, New York City may be able to deliver a more reliable subway experience for its millions of daily riders.

As Sarno reflects on the project, he emphasizes the potential of AI-driven solutions to transform public transportation. “This technology allows us to detect problems earlier, respond faster, and ultimately provide better service to our customers,” he said.

The MTA’s collaboration with Google underscores the potential of public-private partnerships to drive innovation in critical infrastructure. Whether TrackInspect becomes a permanent fixture in New York’s subway system remains to be seen, but its success highlights the possibilities of integrating cutting-edge technology into the daily lives of commuters.

By Benjamin Hall

You May Also Like